Applications of the Vertex

Words that Indicate Finding Vertex

- Minimum/Maximum
- Minimize/Maximize
- Least/Greatest
- Smallest/Largest

Quadratic Equations

Standard Form: $y = ax^2 + bx + c$

Vertex Form: $y = a(x - h)^2 + k$

y-int; (0, c) vertex: (h, k)

Intercept Form: y = a(x - p)(x - q)x-int: (p, 0) & (a, 0)

Suppose the flight of a launched bottle rocket can be modeled by the equation $y = -x^2 + 6x$, where y measures the rocket's height above the ground in feet and x represents the number of seconds that have passed since the rocket was fired. Standard Form Ax2 + BX+C

a. Graph the quadratic equation $y = -x^2 + 6x$ and label its axes accordingly.

Opens Up or Down **DOWN**

Axis of symmetry X = 3

-	b=10 c=0	
x	f(x) = y	
1	f(1)=-(1)2+6(1)=5	
2	$f(2)=-(2)^2+b(2)=8$	_

Vertex: (x, f(x)) > (3, f(3)

a. What coordinate point shows the maximum height of the rocket?

Vertex: (3,9)

$$f(3) = -(3)^2 + b(3)$$

y = f(3) = 9

b. What is the maximum height in feet that the bottle rocket reaches?

y value of vertex: 9 feet

c. How long did it take for the bottle rocket to reach in maximum height (in seconds)?

X-value of 3 seconds

How long does it take the rocket to hit the ground?

le seconds