

Calculating Measures of Central Tendency & Spread

Measures of Central Tendency are used to generalize data sets and identify common values.

*Mean

Definition: Average of a numerical data set, denoted as \bar{x}

Calculation: Add up all the data values and divide by the number of data values

Useful When: - Data values do not vary greatly

- No outliers

- Distribution is symmetric

Example: Find the mean of the following numbers. / Find average. a. 76 77 79 80 82 88 90 92

sum of all terms

76+77+79+80+82+88+90+92

8

Definition: The <u>middle number</u> when the values are written in numerical order

Calculation: Rewrite your data values in numerical order to find the middle number.

o If your data set is ODD, then the median will be the number that falls directly in the middle.

Median (Q2)

If your data set is **EVEN**, then the median is the average of the two middle numbers.

Useful When: - Distribution is skewed

- Data values contain an outlier

Example: Find the median of the following numbers.

a. 76 77 79 80 82 88 90 92

mean laverage:

 $\frac{80+82}{2} = [$

81

Mode

Definition: Value that occurs most frequently. There can be no, one, or several modes

Calculation: Find the numbers that are repeated

- NO MODE (No numbers repeat)
 - Say "no mode"
- o ONE MODE (One number repeats)
 - State the number that repeats
- MORE THAN ONE MODE (Several numbers repeat the same amount of times)
 - State the numbers that repeat.

Useful When: - Data set contains categorical data

Example: Find the mode of the following numbers. a. 76 77 79 80 82 88 90 92

no #'s repeat -> [No Mode

Q1 & Q3

Definition: Quartiles are values that divide a list of numbers into quarters

- First (Q1) Quartile: Median of the lawer half of a data set
 - o Calculation: Find the middle number of the values to the left of the median
- Third (Q3) Quartile: Median of the upper half of a data set
 - o Calculation; Find the middle number of the values to the right of the median

Example: Find the lower and upper quartiles of the following numbers.

10Wer upper half

median = middle

16 (17, 19, 80

= [78 = Q1]

 $\frac{88+90}{2} = 89 = 93$

Outliers

Data value that is much greater than or much less than the rest of the data in a data set

If an outlier is present, you would use the median to describe the data, NOT the mean!

Example: Identify any outliers in the data set. Then determine if the median or mean best represents the data sets.

a. 15, 10, 12, 18, 10, 22

none-mean

b. 50, 15, 10, 12, 18, 10, 22

50-median

Measures of Spread

Measures of Spread describe the "diversity" of the values in a data set. Measures of spread are used to help explain whether data values are very similar or very different.

Range

Definition: Difference between the greatest and least values in the set

Calculation: Subtract the smallest data value from the biggest data value

Range = Biggest # - Smallest #

Example: Find the range of the following numbers.

a. 76 77 79 80 82 88 90 92

smalkst

biggest #

92-76=[16

Algebra 1

Unit 12: Data Analysis

Notes

Definition: The <u>difference</u> between the <u>third and first quarties (Qs=Qs)</u>. It finds the distance between two data values that represent the middle 50% of fine data.

Calculation: Subtract the first quartile value from the third quartile value (Qs - Qs).

Example: Find the interquartile range of the following numbers. a. 76 77 79 80 82 88 90 92

Mean Absolute Deviation Definition: Average absolute value of the <u>difference</u> between <u>each data point and the mean</u>. It essentially takes the average distance of the data points from the mean.

A data set with a smaller mean absolute deviation has data values that are closer to the mean than a data set with a great mean absolute deviation. The greater the mean absolute deviation, the more the data is spread out.

The formula for mean absolute deviation is:

 $\frac{\sum_{i=1}^{N} x_i - \overline{x}}{N} \qquad \frac{X_1 = \text{data value}}{\overline{X} = \text{mean}}$ $\sum_{i=1}^{N} x_i - \overline{x} = \text{sum}$

positive answer/result

Calculation: - Find the mean of the set of numbers

- Subtract each number in the set by the mean and take the absolute value of each new number (new number will be positive)
- Find the sum of the new numbers and divide by the number of data values

Example: Find the MAD of the following numbers. a. 76 77 79 80 82 88 90, 92

N=8 X= mcan= 83

MAD = WWW-83/4-12-83/+/70-83/+/80-83/+/82-83/+/88-83/+/88-83/+/90+83/+/90-83/+/82-83/+/88-83/+/90+83/+/92-83

 $\frac{7+b+4+3+1+5+7+9}{8} = \frac{42}{8} = \boxed{5.25}$