Perfect Squares

Take the square root of each of your perfect

Square Roots

1

									i .		12
											12×12
1	4	9	16	25	36	49	64	81	100	121	144
√ 1	√4	√9	V16	√ 25	√ 3 6	V49	·64	√81	v100	√12I	√144
1	2	3	4	5	6	7	8	9	10	11	12

Perfect Squares are the product of a number multiplied by itself $(4 \cdot 4 = 16; 16)$ is the perfect square).

Think about the process we just performed: Number → Squared It → Took Square Root → Same Number

A root and an exponent are **inverses** of each other (they undo each other). Therefore, square roots and squaring a number are **inverses** or they undo each other, just like adding and subtracting undo each other.

When are Radical Expressions in Simplest Form?

A Radical expression is in simplest form if:

• No perfect square factors other than 1 are in the radicand (ex. $\sqrt{20} = \sqrt{4.5}$)

 $\sqrt{20} = \sqrt{4.5}$

Simplifying Radicals

Guided Example: Simplify $\sqrt{108}$

1 108 1 108 24 27 36 3

Practice: a. $\sqrt{16} = 4$

d. $\sqrt{14}$

3. (16. (6) (16) 3. (16. (6) (16)

g.
$$6\sqrt{120}$$
6 · $4 \cdot 30$
6 · $2 \cdot 30$

h.
$$2\sqrt{36}$$
2. $6 = 12$
43

coexficient radical symbol radical symbol radicand