Solving by Finding Square Roots

Review: If possible, simplify the following radicals completely.

a.
$$\sqrt{25} = 5$$

b.
$$\sqrt{49} = 7$$

c.
$$\sqrt{64} = 8$$

Explore: Solve the following equations for x:

a.
$$x^2 = 16$$

$$x = 4$$

b.
$$x^2 = 4$$

$$\int X^2 = A$$

$$X = 2$$

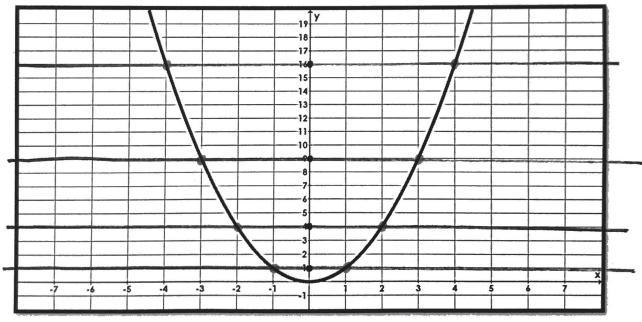
$$C. x^2 = 9$$

$$\sqrt{x^2} = \sqrt{9}$$
 $\sqrt{x^2} = \sqrt{1}$

$$x = 3$$

$$d x^2 = 1$$

$$X = 1$$


What operation did you perform to solve for x?

inverse operation -> square root

How many of you only had one number as an answer for each equation?

Well, let's take a look at the graph of this function.

After looking at the graph, what values of x produce a y value of 1, 4, 9, and 16? In other words, what are the

values of x when y = 1, 4, 9 and 16?

Y		4	9	16
X	-141	-242	-343	-4+4

What would be your new answers for the previous equations?

a.
$$x^2 = 16$$

b.
$$x^2 = 4$$

$$C_{1} x^{2} = 9$$

d.
$$x^2 = 1$$

$$X = +34 - 3$$

$$x = +34-3$$
 $x = +14-1$ $x = \pm 3$ $x = \pm 1$

Solving by Taking Square Roots without Parentheses

Steps for Solving Quadratics by Finding Square Roots

- 1. Add or Subtract any constants that are on the same side of x^2 .
- 2. Multiply or Divide any constants from x2 terms. "Get x2 by itself"
- 3. Take square root of both sides and set equal to positive and negative roots (±).

Ex:
$$x^2 = 25$$

 $\sqrt{x^2} = \sqrt{25}$
 $x = \pm 5$
 $x = + 5$ and $x = -5$

Solve the following for x:

$$\int_{1}^{1} x^{2} = 49$$

$$\int_{1}^{2} x^{2} = 49$$

$$\chi = \pm 7$$

$$4) \frac{x^{2}}{4} = \frac{128}{2}$$

$$(x^{2}) = 64$$

$$x = \pm 8$$

$$7) 2x^{2} + 8 = 170$$

$$-8/-8$$

$$2x^{2} = \frac{162}{2}$$

$$x = \pm 9$$

2)
$$x^{2} = 310$$

 $\sqrt{x^{2}} = 310$
 $x = \pm 10$

$$5) x^{2} - 1/1 = 14$$

$$+ 1/1 + 1/1$$

$$\sqrt{x^{2}} = \sqrt{25}$$

$$x = \pm 5$$

8)
$$7x^{2} - 6 = 57$$
 $1 \times 2 = 63$
 $1 \times 3 = 63$
 $1 \times 3 = 63$

$$\int_{X^2}^{3) x^2 = 0} x^2 = 0$$

$$x = \pm 0$$

$$6) \frac{3x^2}{3} = \frac{48}{3}$$

$$\sqrt{X^2} = \sqrt{10}$$

$$X = \pm 4$$

Solving by Finding Square Roots (More Complicated)

Steps for Solving Quadratics by Finding Square Roots with Parentheses

- 1. Add or Subtract any constants outside of any parenthesis.
- 2. Multiply or Divide any constants around parenthesis/squared term. "Get ()2 by itself"
- 3. Take square root of both sides and set your expression equal to BOTH the positive and negative root (±). Ex: $(x + 4)^2 = 25$

$$\sqrt{(x + 4)^2} = \sqrt{25}$$

 $(x + 4) = \pm 5$
 $x + 4 = +5$ and $x + 4 = -5$
 $x = 1$ and $x = -9$

4. Add, subtract, multiply, or divide any remaining numbers to isolate

REMEMBER WHEN SOLVING FOR X YOU GET A POSITIVE AND NEGATIVE ANSWER!

Solve the following for x:

1)
$$(x-4)^2 = 81$$

$$X - 4 = \pm 9$$

$$X-4=+9$$
 $X-4=-9$

$$2\sqrt{(p-4)^2} = 16$$

 $p-4 = \pm 4$

$$D - 4 = \pm 4$$

$$\frac{2}{x}$$
 3) $\frac{1}{2}(x+8)^2 = 14 \cdot 2$

$$\sqrt{(x+8)^2} = \sqrt{28}$$

$$X+8 = \sqrt{1} \cdot \sqrt{4}$$

 $X+8 = \frac{1}{2} \sqrt{7}$

$$x = 2\sqrt{1-8}$$
 $x = -2\sqrt{1-8}$

$$-\frac{1}{2}(x+3)^{2} = -32$$

$$f(x+3)^2 = \sqrt{10}$$

$$x+3=+4$$
 -3
 -3
 -3
 -3

$$6) 3(x-4)^{2} + 7 = 67$$

$$-7 - 7$$

$$8(x-4)^{2} = 60$$

$$8(x-4)^{2} = 20$$

$$8(x-4)^{2} = 20$$