Unit 2 Study Guide Proportional Reasoning & Dimensional Analysis

г		7.7.	<u> </u>	-	 -	
	Name:	KEY	_		 	
1		,	BIOC	le r		_
1			BIOC.		 	 -

Learning Target #1: Proportional Reasoning

1. I can write a ratio in several ways.

Ratio: A comparison of two quantities using division *Order Matters when you write a ratio. *There are 3 ways to write a ratio (1:4, 1 to 4, 1/4) *Always simplify your ratio	In Mrs. Dombrowski's class, there are 5 students who own an ipad and 15 students who own an iphone. A. What is the ratio of iphones to ipads? 15:5, 15 to 5, 5 B. What is the ratio of iphones to total students? 15:20, 15 to 20,	1 <u>5</u> = 20
	For the following ratio, create a second part to whole and a part to part. Put W link 3 out of 10 prefer math over science class.	
	Part to Whole: 7 out of 10 prefer science over me	th.
	Part to Part: 3 to 7 prefer math over se	1

2. I can determine equivalent ratios by Scaling up or down.

3. I can determine equivalent ratios using a table.

Ratio tables are helpful when solving word problems or if you are given a table with missing values. Realize that each column in the table represents a ratio and they are all equivalent (hence, you can also use a proportion to find the missing numbers).

		2		. 19.0
The second second			1 2 1	
Vellow paint (ex)	2	4	8	16
Blue paint juzi	4	8	16	32
		1	1 1 2 1 1 1 1 L	
		-2		×2

4. I can determine equivalent ratios using proportions.

When solving proportions, you can scale up or down OR cross multiply.

You should LABEL everything in a proportion.

Sometimes, it is best to create your part to part ratio plus the two part to whole ratios before solving to help ensure you solve what is asked of you (See I Can Statement #1).

5. I can determine a unit rate.

A unit rate is the rate for one unit of a given quantity which means they have a denominator of one.

Example: Sarah reads 88 pages in 4 hours. How many does she read in an hour?

Unit rates are also useful for determining better buys (which is cheaper per unit?).

Example: Is a 12 oz bag of chocolate chips for \$4 a better deal than an 18 oz bag of chocolate chips for \$4.89?

$$\frac{$5.50}{18-az}$$
 5.50 $\div 18 = 0.31 per ounce --BETTER DEAL!

A. Austin travels 455 miles in 9 hours. How far did he go in one hour?

455 miks = 50.6 miks

9 hours = 1 hour

0.91

1202

6. I can determine a Unit Rate from a Graph.

Each point on the graph represents a ratio that is equivalent to another ratio (point) on the graph.

The unit rate on a graph is the slope of the line.

When calculating the unit rate, it is the y-value over the x-value (rise over run).

Unit rates should always be labeled.

0.10

2002

Learning Target #2: PERCENTS

7. I can convert between Fractions, Decimals, & percents.

Fractions:

- To decimals: divide numerator & denominator
- To percents: turn to a decimal and move decimal two place values to the right

Decimals:

- To percents: move decimal two place values to the right
- To fractions: place over 10, 100, 1000 (depends on your place value)

Percents

- To decimals: move decimal two place values to the left
- To fractions: place over 100 and simplify(if necessary)

A. Sh	A. Show two other forms of the following numbers (percentage)				
fract	ions, or decimal):	ميقايين	Decimal		
-	Percent	Fration	T. D. L.		
1.0.7	11%	71/100			
2. 0.0	1.2%	1.2			
3. 9%		100	.09		
4, 24	5%	245	2.45		
5. $\frac{2}{5}$	401.		.40 04.4		
6. $\frac{5}{8}$	42.5%		. 625		

8. I can calculate the percent, Part, or Whole of a Number.

$$\frac{Part}{whole} = \frac{\%}{100}$$

The part is normally identified by the word "is".

The whole is normally identified by the word "of".

The whole indicates the total or original.

	in the dement
1 Caladate the nort whole	or percent of the following statement:
A. Calculate the part, whole,	of percent
A DE DE COLONIA DO	Dark 1

1, 8% of 40 is what number?

$$.08 \times 40 = 3.2$$

$$100 \times 90 = 75 \times$$
 120=

$$\frac{26}{x} \times \frac{40}{100}$$

9. I can apply percents to real world problems.

Tax and Tip are applications that are added to our total bill.

- I can treat the tax and tip like a "part" and add the tax to my bill.
- I can also treat them as an additional percent (100% + 7% tax rate = 107% of the bill), which calculates the final bill.

$$\frac{0R}{35} \times \frac{80}{100}$$

$$\frac{100x}{2800} = 2800$$

X = 28 games B. The Gap is selling shirts for 30% off the original price. The shirts are on sale for \$22.40. What was the original price of the shirt?

Discounts are applications that are subtracted from original price

- If I calculate using the percent off, the number I get out is the discount that I should subtract from the original price.
- If I calculate using the percent paying. the number I get out is the price I would pay for the item after the discount. 1100% - 25% off = 75% paying for the item).

I can use the percent proportion to solve real world problems.

C. A bike is on sale for \$162.50 if the original price of the bike is \$250. what is the percent discount?

original price D. A pair of sunglasses costs \$26.00 during a summer sale. If there is a 6% sales tax and Dally pays for the glasses with \$30, how much

2 Total paid = \$26+\$1.56 = \$27.56

F. You go out to eat with your family and have a delicious meal at Mellow Mushroom. Your total bill, including a 20% tip comes to \$51.47. What was the tip?

G. The shirt you have been wanting for the past 3 months goes on sale for 25%. When you arrive to the store, you find out there is an additional 10% off the sale price of the shirt. If the shirt is originally \$45, what is the final sale price of the shirt?

Learning Target #3: Dimensional Analysis

10. I can convert within the metric system.

A. Convert the following:

1979	remy	Cheel	(Perpetrit)	(MANA)	Grandats	All also alder
k	h	d	U	d	c	m
killo	hecto	deka	GEAM METER LITER	deci	centi	må

when moving the decimal to the left, you are dividing by a power of 10.

When moving the decimal to the right, you are multiplying by a power of 10.

When comparing two quantities, make sure they are in the same unit before comparing (you might have to convert one of them to the other unit first)

		KHDBDCM 2right
		deka deu 349 = 034 mg gram(bah) -> hecto KHBBOLM 2 Left
•	7,225, $12.25m = 72.25m$	34 .34 hg = .34hg

11. I can convert units of measure (1 & 2 step).

what you want Conversion Factor: what you have

If you are going from Metric to Customary or vice versa, the conversion factor will be given to you.

A. Convert 5 miles to feet. (1 mik = 5,200 feet) $5 \text{ miles } \times \frac{5,280 \text{ feet}}{1 \text{ miles}} = 26,400 \text{ feet}$

B. Convert 4 years into days. (1 year = 345 days)

4 years x 3/05 days = [14/0 days

C. How many miles will a person run during a 10 kilometer race? (1.6 kilometers in one mile) Kilometer > mike

10 Kilometers x 1 mile = 10 miks 1.6 Kilometers

12. I can convert units of measure (Multi-Step & Word Problems).

76.25 miks

Make sure you write every single conversion factor!

Think about where you are starting and where you want to go. Create a plan that includes the necessary conversion factors.

meters -> curtimeters 4

A. Convert 12 pints to gallons. pints -> quarts -> gallons 12 pints x 1 quart x 1 quilon = 12 gallons
2 pints 4 quarts 8

= $\frac{3}{2}$ gallons or 1.5

B. Sarah ran a 10 meter race. How many feet is that? (1 in = 2.54 complementers -> centimeters -> inches -> feet

1,000 centimeters x liner x 1 foot 2.51 cm 12 INCHES

11 meters -> 1,000 continueters

 $\frac{1,000 \text{ fut}}{2.64 \times 12} = \frac{1,000 \text{ ft}}{30.48} = \boxed{32.8 \text{ fut}}$

Example: A bucket has 4.65 L of water. How C. A bowl of cereal weighs 60 az. How heavy is if in kg2 (1 az = 28 3 many gallons of water is that (1.06 gt = 1 L). Given: 4.65 L Needed: gallons 9) 02 -> grams -> Kilograms 60 02 x 28.3 grams = 1, 498 grams -> Kilograms Plan: L ----- qt ------Equalities: 1.06 qt = 1 L; 1 gal = 4 qt Set Up Problem: 1,698 = 11.698 Kilograms 13. I can perform a rate conversion. A. Convert 65 mph to feet per minute. WILES -> feet Sometimes it is helpful to convert either the numerator or denominator first and then convert hour -> minute (miks pur hour) the other. If you do too much at once, your problem gets messy. 65 mites x 5,280 feet x 1 hour I hour I mete 60 minutes 60 minut Example: Convert 66 feet per second to miles per hour. 66 feet 60 sec 60 min 1 mile = 45 miles/ hour B. Convert 32 feet/seconds to meters/min (1 inch = 2.54 cm). feet -> inches -> centimeters -> meters Seconds -> minutes 4 KHDBDCM 1 second 1 foot 1 inch x 10 seconds 585.216 meters 0 32×12×2.54×60 cm 3 58,521,6 cm → meters 1 minute C. The average American student is in class 330 minutes/day. How many hours per school week is this (use 1 school week = 5 days)? minutes -> hours days -> school week 330 minutes x 1 hours x 5 days

1 day 60 minutes 1 week = 330 × 5 hours = 1650 hours = 27.5 hours