Name: KEU

Date: Block: Block:

Unit 6 Review - Study Guide

Linear Functions

What you need to know & be able to do	Things to remember	Exa	mples
Determine if a relation is a function. Day 1	Every input only has one output (each 'x' only has one 'y') Use the vertical line test on graphs.	1. Determine if the graph is a function.	2. Determine if the table represents a function.
2. Create an input-output table for a function. Day 1	"x-y chart" – choose the x-values & plug them in	3. Create an input-output table for the function $f(x) = 2x - 3$. Use $x = -2, -1, 0, 1$, and 2. $ \begin{array}{c cccc} X & Y \\ \hline -2 & f(-2) = 2(-2) - 3 = -7 \\ -1 & f(-1) = 2(-1) - 3 = -5 \\ 0 & f(0) = 2(0) - 3 = -3 \\ 1 & f(1) = 2(1) - 3 = -1 \\ 2 & f(2) = 2(2) - 3 = 1 \end{array} $	4. Create an input-output table for the function $f(x) = 6$. Use $x = -2, -1, 0, 1$, and 2. $ \begin{array}{c cccc} X & Y \\ \hline -2 & 6 \\ 0 & 6 \\ 1 & 6 \\ 2 & 6 \end{array} $
3. Evaluate functions. Day 1	f(x) function notation f(2) means you must substitute a '2' for every 'x' in the function!	5. Evaluate f(4). $f(x) = x^{2} + 3x - 1$ $f(4) = 4^{2} + 3(4) - 1$ $= l_{0} + _{2} - 1$ $= 28 - 1$ $= 27$	6. Find the value of $f(x) = 4x - 2$ when $x = -1$. $f(-1) = 4(-1) - 2$ $= -4 - 2$ $= -6$

			max
4. Write a function. Day 2		7. a. Find f(5). When $X = 5$, $Y = 5$ b. Find the value of x for f(x) = 2. When $Y = 2$, $X = 4$ c. What is the maximum and minimum? Write in function notation. $F(X) = 7$ MAX $F(X) = -7$ MIN 8. Time Worked $\begin{bmatrix} 1 & 2 & 3 & 4 \\ (h) & x & 5 & x & 5 \end{bmatrix}$ Amount Earned $\begin{bmatrix} 5 & 10 & 15 & 20 \end{bmatrix}$ $F(X) = 5X$	min. $x = \frac{1}{2}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}$ $x = \frac{1}{2}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}$ $x = \frac{1}{2}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}$ $x = \frac{1}{2}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \frac{3}{3}$
5. Create a function & use it to solve a problem. Day 2		10. You join a kickboxing class at a local gym. The cost is \$5 per class plus \$30 for the initial membership fee. Write a rule for the total cost of the class as a function of x. How much will it cost if you attend 7 classes? F(x) = 5x + 30 F(7) = 5(7) + 30 = 36 + 30 = 36 + 30	11. Air Force One can travel 630 miles per hour. Let h be the number of hours traveled. Write a function rule that represents the total number of miles traveled. Then, determine how many miles Air Force One can travel in 4 hours. $f(h) = 630h$ $f(4) = 630(4)$ $= 2,520 \text{ hours}$
6. Calculate the average rate of change (slope). Day 3 & 9	"slope" $m = \frac{y_2 - y_1}{x_2 - x_1}$ Change in y Change in x	12. Calculate the slope. Then write the equation of the line.	13. Calculate the average rate of change between the following points on a line. (0, 4) & (-3, 10)

Systems of Equations and Inequalities

What you need	Things to remember	Exc	amples
to know & be able to do			
Solve a system of linear equations by graphing.	Make sure each equation is solved for y.	1. Solve the system. y = 2x + 3 $y = 2x - 5$	2. Solve the system. $x = y - 8$ $y = -x$ $y = x + 6$
g. apim.g.	Graph both equations and find where they intersect.	Parallel lines = same slope: No solution 3. Solve the system of equations. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	and solution C (-4,4) 4. Solve the system of equations. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Solve a system of linear equations using substitution.		$ \begin{array}{r} 10x + 35x - 63 = -18 \\ 45x - 63 = -18 \\ + 63 + 63 \end{array} $ $ \begin{array}{r} 46x = 45 \\ 46 = 45 \end{array} $	6. Solve the system. y = -8x - 16 $y = 3x - 5$ $0 - 8x - 16 = 3x - 5$ $+8x + 8x$ $-16 = 11x - 8$ $+5 + 5$ $-11 = 11x$ $-1 = x$ $y = 3[-1] - 5$ $y = -3 - 5$ $y = -8$

5. Systems with Real World Scenarios	Define your variables Determine if slope intercept or standard form is best Set up your equations and solve using elimination or substitution. Break Even Point: where the cost equal the income $y = 0 + 40(5)$ $y = 0 + 200$ $y = 0 + 200$	13. One high speed internet provider has a \$50 set up fee and costs \$30 per month. Another provider has no set up fee and costs \$40 per month. In how many months will both providers costs the same? What will that cost be? X=Month Y = 50 + 30 X Y = Cost Y = 0 + 40 X Substitution Method: 50 + 30 X = 40 X -30 X -30 X 50 = 10 X 5 = X Months 15. Explain what a break-even point is. What will the income and cost always be at the break-even point?	X=12-Y X=12-1 14. Sam spent \$24.75 to buy 12 flowers for his mother. Roses cost \$2.50 each and daisies costs \$1.75 each. How many of each flower type did he purchase? X+Y=12 2.5X+1.75Y=24.75 Substitution Method: Yearrange: X+Y=12 X=12-Y- 2.5(12-Y)+1.75Y=24.75 30-2.5Y+1.75Y=24.75 -0.75Y=24.75 Y=7.4aise 16. As a fundraiser for a band trip, AHS plans to sell hats with the school logo. The company producing the hats charges \$240 for the design and set up plus \$8 per hat. The band members will sell the hats for \$12 each. What is the break-even point? What will the cost and income be?	15 5
			each. What is the break-even point?	

3. Salve a system	To eliminate a	7. Solve the system.	8. Solve the system.
of linear	variable using	x - y = 11	4x = 20 - 8y
equations using	addition or	$\frac{1}{4} 2x + y = 19$	$-4x + 2y = -30 \left(\frac{1}{1}, \frac{1}{1} \right)$
elimination.	multiplication one	8x = 30	"tearrange:
	coefficient must be	~ ~	4x=20-84
	positive and one must be negative.	3 3	+84 +84
	most be negative.	X = 10	
		~~~~·	4x+8y=20
		2(10) + y = 19	+ -4x+2y=-30
		20+4=19	Lex = -10
		-30 -20	y = -1
		y = -1	
		[[10,-1]]	-4x+2l-1)=-30 -4x-2=-30
			$-4x = -28 \times = 7$
		9. Solve the system.	10. Solve the system.
		2x + 3y = 12. $3 (5x - y = 13)$	-2(-3x-8y=0) 3(-2x-10y=14)
		3000,000	3(22-10)-14)
		15x -3√ = 39	6x+16y=0
		$+2X + 3\sqrt{=12}$	- 6x-30y = 12
		1/x = 51	-14y = 42
		J 17	y=-3
		X=3	
		2/2/22/212	-2x-10(-3)=14
		2(3)+3y=12	-2x+30=14 -36-30
		4+3y=12	-36 -30
		-10	-2x = -16
		3y=6	$x=8  \boxed{(8-3)}$
		y=2 [(3,2)]	x = 0 ((8, -3)
4. Special Types	No Solution:	11. Solve the system:	12. Solve the system:
of Systems	• False	y = 2x - 2	-9x - 3y = -18
	<ul><li>Equations</li><li>Slopes are</li></ul>	-2x + <u>y</u> = 1	3 (3x + y = 6)
	the same	-2x + 2x - 2 = 1	
	Y-intercepts	w. w.	9x + 3y = 18
	<ul><li>are different</li><li>Parallel Lines</li></ul>	-2=1	-9x - 3y = -18
		FALSE = No Solutions	
	Infinite Solutions:	TARRE - MO SOINTIONS	0=0
	<ul> <li>True</li> <li>Equations</li> </ul>		TRUE = INFINITE
	<ul> <li>Equations</li> </ul>		
	<ul><li>are the same</li><li>One Line</li></ul>		SOLUTIONS
	5,10 5110		





Y = 
$$5x + 0.25$$
  
Y =  $0.5x + 4$   
Y =  $0.25x + 5$   
Y =  $0.25x + 5$   
Y =  $0.25x + 6$ 

26. The Fun Guys game rental store charges an annual fee of \$5 plus \$5.50 per game rented. The Game Bank charges an annual fee of \$17 plus \$2.50 per game. For how many game rentals will the cost be the same at both stores? What is the cost? 4 months, \$27 y=5+5.50x

27.

Solve the system of equations: 
$$(x-2y=-16)$$

(a) 
$$(8.-4)$$
  
(b)  $(4.8)$   
 $-4x+8y=48$   
 $4x-4y=-16$   
 $4y=32$   
 $y=8$ 

Which point is a solution of the system: 
$$2x + y \ge 3$$
$$y \ge -2x + 1$$

$$(0,0)$$
  $(0,0)$   $(0,0)$   $(0,0)$   $(0,0)$   $(0,0)$   $(0,0)$ 

$$y = 5.50x$$
(d) Month 11; 550
 $y = 17 + 2.50x$ 

$$5+5.5x = 17+2.5x$$

$$-2.5x - 2.6x$$

$$5+3x=17$$

$$3x = 12$$

$$x = 4$$

$$y = 6+6.50(4)$$

$$y = 6 + 5.50(4)$$

$$y = 27$$

$$2x + 1$$

(-2, 4)

(4, -8)

(d)

$$(0.1)$$
  $(0.1)$   $0+1 = 3$ 

Which system of inequalities best describes the graph?







- 30. The graph to the right shows the cost of two phone plans. How many minutes does a person need to call each month so that Plan B is the less expensive plan to use?
  - (a) Less than 10 minutes
  - Less than 40 minutes
  - (c) More than 40 minutes
  - (d) More than 30 minutes but less than 40 minutes

Use the graph below to answer the question.



- A student store sold a total of 55 shirts for \$620. The shirts sold were either red or white. If the red shirts sold for \$12 each and the white sold for \$10 each, how many of each color shirt were sold?
  - 20 red, 35 white (a)
  - 28 red, 27 white (C)
- x=red y=white
- (b)

of each color shirt were sold? X+y=5527 red, 28 white 12X+10y=1020 12(55-y)+10y=1020 12(55-y)+10y=1020 12y+10y=1020 12y+10y=1020

32. Consider each system of equations below. Just by looking at the equations, tell how many solutions the y=20system will have and explain why.

a. 
$$\begin{cases} y = 4x - 3 \\ y = 4x + 2 \end{cases}$$

Same slope 4 diff. y-int = 
$$\begin{cases} y = \frac{1}{3}x + 5 \\ y = \frac{1}{3}x + 5 \end{cases}$$
Some slope 4 diff. y-int = 
$$\begin{cases} y = \frac{1}{3}x + 5 \\ y = \frac{1}{3}x + 6 \end{cases}$$
C. 
$$\begin{cases} y = -x + 2 \\ y = \frac{1}{3}x + 6 \end{cases}$$
d. 
$$\begin{cases} y = -\frac{3}{4}x + 5 \\ y = -\frac{3}{4}x - 4 \end{cases}$$
diff. slope 4 same slope 4 y-int = parallel lines = parallel lines = no solutions