Average Rate of Change (Slope) of a Quadratic Function

Review: Find the slope (average rate of change) for the following problems:

Remember slope is: $\frac{rise}{run}$ or $\frac{y_2 - y_1}{x_2 - x_1}$

b

x	Y
3 X,	27 Yı
5 X2	45 Y 2
7 X,	63 Yı
9 X2	81 Y 2

X, Y, X2 Y2 c. (-9, 5) & (-3, 1)

$$\frac{1-5}{-3+9} = \frac{-4}{b} = \left[-\frac{2}{3} \right]$$

$$m = \frac{\text{rise}}{\text{run}} = \frac{-2}{+1} = \frac{-2}{-2}$$

$$\frac{45-27}{5-3} = \frac{18}{2} = \boxed{9} \quad \frac{81-63}{9-7} = \frac{18}{2} = \boxed{9}$$

When you calculate the slope of a linear function, its slope is ALWAYS __ the Same

Investigating the "Slope" of a Quadratic Function

The graph of $y = -x^2 + 2x + 8$ is given. Use the table of values on the right to determine the slope (average rate of change) from one point to the next point.

X	Υ
-3	-7
-2	0
-1	5
0	8
1	•
1	9
2	8
2	8
2	8 5

a. Find the average rate of change from x = -3 and to x = -2.

b. Find the average rate of change from x = -1 and x = 0.

c. Find the average rate of

 $\frac{5-8}{3-2} = \frac{-3}{1} = \boxed{-3}$

What do you notice about the rate of change as you go from one point to the next?

When you calculate the slope of a quadratic function, its slope is NOT the same it CHANGES

Practice and Review: For the problems below, find the average rate of change for the given intervals, then list the characteristics of each graph.

Calculate average rate of change on interval $0 \le x \le 2$.

In other words, from when x=0 to when x=2.

Domain: all rea #'s R

Range: Y 2 - 1

Vertex: (2,-1)

Axis of Sym. $\chi = 2$

Y-Intercept: (0,3)

Zeroes: X = 1 X = 3

Extrema: MIN

Max/Min/Value: y = -1

End Behavior: As $x \to -\infty$, $f(x) \to \bigcirc$. As $x \to \infty$, $f(x) \to \bigcirc$

Int of Inc: X 3 2 Int of Dec: X < 2

Calculate average rate of change on interval $0 \le x \le 3$.

In other words, from when x=0 to when x=3.

(0,-8) (3,1) X_1 Y_1 X_2 Y_2

$$\frac{1+8}{3-0} = \frac{9}{3} = \boxed{3}$$

Domain: all real #'s R
Range: Y = |

Vertex: (3,1)

(1 ر 5 Vertex: ______

Axis of Sym. $\chi = 3$ Y-Intercept: (0, -8)

Zeroes: X = 2 X = 4

Extrema: MAX

Max/Min Value: Y = 1

End Behavior: As $x \to -\infty$, $f(x) \to -\infty$. As $x \to \infty$, $f(x) \to -\infty$

Int of Inc: X < 3 Int of Dec: X > 3