Writing Equations of Lines Given Slope & a Point

So far in Unit 5, you have been able to determine the y-intercept from either a graph or an equation in slope intercept form. How will you find the y-intercept or equation of a line without a graph or equation? You can Use the slope intercept form or point slope form to find the y-intercept or equation of a line if you know the slope and a point on the line.

Method 1: Writing Equations Using Slope Intercept Form: v = mx + b

- 1. Write the formula: y = mx + b.
- 2. Substitute the value of the slope in for m and the value of the point in for x and y.
- 3. Solve the equation for b.
- 4. Substitute the value of m and the newly founded b into the formula: y = mx + b.

Method 2: Writing Equations Using Point Slope Form: $\{y - y_1\} = m(x - x_1)$

- 1. Write the formula: $(y y_i) = m(x x_i)$
- Substitute the value of the slope in for m and the value of the point in for x_i and y_i .
- Solve the equation for v

Ex 1: Write the equation of a line if m = 9 and passes through the point (2, 11).

2.)
$$H = 9(2) + b$$

3.)
$$11 = 18 + b$$

 $-18 - 18$
 $-7 = b$

$$y = 9x - 7$$

Method 2:

1.)
$$(y-y_i) = m(x-x_i)$$

3.)
$$y-x = 9x-18 + 11 - 18 + 11 - 18$$

Ex 2: Write the equation of a line with m = -8 and passes through the point (3, 12).

Method 1:

2.)
$$12 = -8(3) + b$$

$$3.)12 = -24 + b$$

+24 +24

4.1 m=-8 b=36

Method 2:

$$(2.)(y-12)=-8(x-3)$$

3.)
$$y-12 = -8x + 24$$

 $+12$
 $y = -8x + 36$

$$y = -8x + 3b$$

Ex 3: Write the equation of a line with m = 4 and passing through the point (2, 5).

Method 1:

$$2.)5 = 4(2) + b$$

$$3.)5 = 8 + 6$$
 $-8 - 8$

4.) m = 4 b = -3

$$y = 4x - 3$$

$$(2.) (y-5) = 4(x-2)$$

3.)
$$y-8 = 4x-8 + 5$$

$$\sqrt{y} = 4x - 3$$

Applications of Slope Intercept Form

Y	=	M	X	+	В
Output		Slope	Input		Y-intercept (0, b)
Dependent Variable		Rate	Independent Variable	A.	Starling Amount One Time Fee
Range		changeiny changeinx	Domain		

When a problem involves a **constant rate or speed and a beginning amount**, it can be written using slope intercept form. You need to recognize which value is the slope and which is the y-intercept.

Example 1: Suppose you receive \$100 for a graduation present, and you deposit it into a savings account. Then each week after that, you add \$20 to your savings account.

Complete the following (some may need to be calculated):

Independent Quantity: (X) weeks

Dependent Quantity: (y) # in savings

Slope: (m) #20

Y-intercept: (b) ♯(00

Equation: y = mx + b y = 20x + 100

When will you have \$460?

plug 460 in for y

$$y = 20x + 100$$
 $460 = 20x + 100$
 -100
 $360 = 20x$
 20
 $18 = x$

When a word problem involves a **constant rate or speed and gives a relationship at some point in time between each variable**, you need to use y = mx + b to find the b value/y-intercept to create an equation to model the relationship.

(m) X y

Example 2: Marty is spending money at an average rate of \$3 per day. After 14 days, he has \$68 left. How much money did he begin with?

(b)

Complete the following (some may need to be calculated): Independent Quantity: (x) 14day 5

Dependent Quantity: (y) # |e++ - # 68

Slope: \$3

Y-intercept: (b) ?

Point(s): (14,68)

Equation: y = mx + b 68 = 3(14) + b 68 = 42 + b -42 - 42 124 = b# began with

After 6 days, how much money does he have remaining?

* plug 6 in for x

$$y = 3x + 26$$
 $y = 3(6) + 26$
 $y = 18 + 26 = 34$